

Event Reconstruction

Initial *Track / Shower* Pattern Recognition using *Artificial Neural Networks*

Costas Andreopoulos <*C.V.Andreopoulos* @*rl.ac.uk*>

MINOS Collaboration Meeting - Fermilab, Sep. 18, 2003

Outline

I have been using Artificial Neural Networks for Neutrino Event Classification.

(see my other talk in this Collaboration meeting)

Can they also be used for Pattern Recognition during Event Reconstruction?

In this presentation:

- Motivation
- Quantification of topological patterns
- Neural Network training
- Neural Network performance
- Example events.
- Conclusions & further work

Initial thought & Goal

- Very well suited for the task of identifying topological patterns...
- It should be very fast too... You just evaluate the neural net function for the given input

COULD A NEURAL NETWORK WORK HERE?

Quantifying the Topological Patterns

Where to find a training sample?

Use MC events reconstructed with the SR packages – examples shown below:

Neural Network Inputs

Right now I am using 72 input variables (!!) corresponding to different transverse, longitudinal & radial windows

There is certainly some redundancy... but the neural network **performs nice and fast!**

There is however some room for optimization by reducing the dimensionality. In the next iteration I will try to do this playing with PCA (*Principal Components Analysis*).

EXAMPLES OF INPUT VARIABLES:

Neural Network Performance

SNNS - 72:24:1 - BackPropMomentum/0/2/0.5 - TopologicalOrder - Shuffle

KEY for next plots:

strips belonging to 'shower-like' formations

strips belonging to 'track-like' formations

Quoted times:

on a 1.4 GHz Centrino (Dell D600) - 512 MB RAM

Quoted time is the time for:

looping over all strips, and for each one

- compute the 72 neural net inputs
- evaluate the neural net function
- apply the threshold value
- plot on the 'event display'

using interpreted C++ code (loon macros)

The **net computation time** using compiled code will be **much much less**

Note before exposed to critic:

Although pretty close, these ARE NOT "final reconstructed events".

They are just "reconstruction seeds" obtained in SUB-SEC time scale to aid subsequent reco.

7th example -- CPU time: 0.42 sec

Event Slicing

Just a single slide on event slicing before finishing this presentation

It will be presented in detail at a later stage

- Take distribution of strip times
- Apply a threshold to identify 'peaks'
- Share the time between peaks based on relative peak pulse heights

Refine slices

• 3-D clustering in (c*t, tpos, z) space

Conclusions & Further work

- An alternative reconstruction package (AltReco) is under development
- Framework-wise:
 - •100% compliant with MINOS Offline framework (an SR-clone)
 - "Similar" candidates, same output tree... no difference for the end user.
- What already exists:
 - Event Slicing Algorithm:
 - an 'almost' correct first guess using timing information only, and then
 - refinement using **3-D clustering** in (c*time, z, transverse position) space.
 - Initial Track/Shower Pattern Recognition:
 - an 'almost' correct first guess using **Artificial Neural Networks**, and then
 - refinement (?)
- As it is based on 'almost' correct first guesses...
 refinement does not last long: VERY FAST!
- **Next step:** Interfacing with existing trackers / write own?
- Next step: Commit in CVS as soon as I feel confident with initial test and have documented its performance (successes & failures)